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ABSTRACT In this paper, a soft switching interleaved boost converter (SS-IBC) using auxiliary resonant
circuit for electric vehicles (EV) applications is proposed. Several phases of the proposed converter can be
connected to make a multiphase interleaved boost converter. The operation of multiphase interleaved boost
converter is identical to that of the one phase boost converter. All phases are ideally identical with shifted
control signals and are controlled by PWM control strategy of equal switching frequency and duty cycle.
The proposed converter can be considered as a cost effective retrofit to the grid integrated battery charging
applications. It affords a steady electrical power for the load not only from the utility or classical energy
storage systems as batteries, but also from renewable energy systems like photovoltaic (PV), wind or fuel
cell systems. An appropriate design example demonstrates the size of the design circuit components and
parameters are investigated. Analysis, design, and simulation of the presented converter are verified using
PSIM simulation software on an 8.2 kW setup system with a conversion efficiency more than 97% over a
wide output power conversion range from rated power to a minimum power of 460 W with complete soft
switching operation. The converter performance is also validated experimentally on a downsized hardware
rated 1.0 kW and the maximum efficiency is found to be 98.78%.

INDEX TERMS Auxiliary resonant circuit, battery charger, electric vehicle, powertrain, interleaved boost
converter, soft switching.

I. INTRODUCTION
Because of the increasing interest in environmental issues
related to ever-increasing demand for energy, the depletion of
fossil fuels and internal combustion engine (ICE) vehicles [1],
there is a great interest in renewables, integrated distributed
generators and electric propulsion. These realities demon-
strate the growing market concern to electric vehicles (EVs)
and hybrid EVs [2]. Corresponding to the demonstrated
statistics, in 2050 there will be no ICE vehicles, and
most vehicles will be either electric or plug-in hybrids
electric (PHEV) [2]. Consequently, numerous authorities
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have incentivized both the progress and the purchase of
EVs [2]. Therefore, EVs represent a great option as a mode of
transportation, although some technological issues still must
be overcome [2]. In the Europe Union, the transport sector is
responsible for one quarter of the greenhouse gas emissions,
becoming the second largest emitter of gases after energy
sector. Therefore, the Europe Union has instituted a number
of greenhouse gas reduction strategies, involving that ICE
vehicles account for only half of the urban transport in 2030,
and totally eliminated on 2050 [3].

The electric vehicle market is gradually demanding a
range of more powerful powertrains to approach improved
drivability better than or at least similar to ICE vehicles. For
more electric power propulsion in EVs, battery EV (BEV),
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FIGURE 1. Block diagram of the battery electric vehicle powertrain.

FIGURE 2. Level 1 on-board EV charger.

fuel cell EV (FCEV), HEVs and plug-in HEVs (PHEVs),
a secondary high voltage battery pack must be installed to
start the engine using the inverter. The high voltage battery
pack is made up of multiple lithium-ion cells and stores the
energy needs to run the vehicle. The use of a high voltage
battery pack produces low current, high power density,
and high torque while reducing the conduction losses [4].
However, it raises the cost, weight, and size of the entire
system. Nevertheless, the boost converter is an additional
component of the system that increases the conduction and
switching losses especially at high power ratings, resulting
in reduced power conversion efficiency. Therefore, some
HEVs makers as Toyota hybrid system II, adopt the use
of boost converters to boost the low battery voltage [5].
Fig. 1 shows the schematic diagram of the typical BEV
powertrain. It consists of a high voltage battery pack, onboard
battery charger, boost converters, electric motor and power
management and control system.

Moreover, to gain widespread acceptance, EVs still face
some important challenges such as supplementary cost,
battery life, lack of charging infrastructure and issues related
to battery chargers. Since EVs require electric power chargers
rather than fuel filling, an additional crucial difficulty is the
significant harmonics produced by EV chargers which have
harmful effects on distribution networks [6]. This problem
can be reduced by using active converters and power factor

correction stages as well as high quality boost converters.
Many car drivers find that charging their EV at home is
more satisfactory than frequently going a gas station, saving
time, effort as well as money. However, public charging
stations for EV’s are also becoming widespread, due to rapid
growth in EV’s market. This action creates a necessity to
develop better EV chargers in terms of efficiency, durability,
availability, reliability, and reduced price. Fig. 2 shows the
block diagram of a level 1 EV charger as an example of
on-board charger fed by one phase or three-phase power
supply [7]. It consists of an EMI filter, AC-DC rectification
stage, power factor correction stage and DC-DC boost
conversion stage as an example of on-board power converter
structure.

Numerous structures have been proposed in literature
as isolating and non-isolating topologies for boost con-
verters [8], [9]. The traditional boost structure which is
the simplest topology is not cost effective in high power
applications because of its limited voltage gain, lower
efficiency, extreme duty cycle operation and high-voltage
stress on the power semiconductor devices [10]. To cope
with these difficulties, several techniques using magnetic
coupling including coupling inductors or isolating transform-
ers coupled inductors [9], [11], [12], switched capacitor,
switched inductor and voltage doubles [13], [14]. However,
such topologies are complex structures since it need various
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FIGURE 3. Proposed EV charger.

legs to attain a high voltage conversion ratio. Moreover,
the leakage inductance of the coupled inductor increases
the voltage stress and spikes on switches [15]. Several
literatures work produce non-isolated structures [16] using
a one switch, or produce various configurations based on
traditional structures [13]. In [17], the combination of buck
cand boost converters is employed to connect PV and battery
systems with various types of applications.

During the past decade, various researchers have pro-
posed various converters for decreasing current ripple and
innovative DC-DC converter topologies [18], [19] including
interleaved boost converters (IBC) [20]–[22]. IBCs are an
encouraging interface between renewable energy sources
such as fuel cells, PV, and the DC link of inverters. Due
to interleaving process, IBCs present both lower current
ripple at the supply side and lower voltage ripple at the load
side [23]. The three-phase IBC is validated by an adjustment
between size of the components, conversion efficiency,
current ripple, switch count, and cost [20]. The IBC permits
acting to the exciting difficulties in FCEV applications in
terms of power density, conversion efficiency, and current
ripple. Therefore, in high power applications, interleaving
topologies are commonly implemented as an effective
solution to overcome the problem of current ripple, decrease
element size, increase power rating, enhance dynamic
response, and achieve high conversion efficiency [24]–[29].
These new structures are good candidates towards highly
efficient vehicle powertrain and chargers. Nevertheless, more
advances towards improved outcomes are still widely open
and promising.

The auxiliary resonant circuit is an effective technique
that is widely used in switching converters to overcome the
disadvantages of hard switching PWMboost dc-dc converters
due to their high efficiency and high scalability properties.
It enables a wide range of soft switching operations under
continuous and discontinuous current modes of operation
without any circulating currents. In addition, the current
and voltage stresses in the switching devices can also be
reduced resulting in using high switching frequency, reduced
power loss and high conversion efficiency. Furthermore,

FIGURE 4. One phase of proposed SS-IBC.

soft-switching converters can be usefully extended for the
interleaved circuit topology, that effectively reducing the
input current ripple and reducing the size of the circuit
components and increasing the converter power rating.

In this paper, a new soft switching multiphase interleaved
boost converter employing an auxiliary resonant circuit for
EV applications is presented. Most important advantages of
the proposed interleaved converter include: 1) A wide soft
switching power control range; 2) A reduction of the ripple
currents by an interleaved operation; 3) A minimization of
conduction power loss by discontinuous current operation
in the input side; and 4) A high voltage conversion ratio.
Due to these features, the proposed converter is very
convenient for high volage batteries in EV applications and
low voltage sources as PV and fuel cell systems, which
require high-voltage conversion capability. The paper is
organized as follows: proposed soft switching interleaved
boost converter (SS-IBC) topology including configuration,
operation performance and analysis is described in section II.
Detailed steady-state analysis, performance equations and
the operation modes with their equivalent circuits and
voltage and current waveforms in one switching cycle are
conducted in section III. Design consideration of circuit
parameters is carried out in section IV. Simulation results
and real measurements using experimental setup are given
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FIGURE 5. Equivalent circuit and operation modes during one switching cycle.

in sections V and VI, respectively. Conclusion remarks are
given in section VII.

II. PROPOSED SOFT SWITCHING INTERLEAVED BOOST
CONVERTER
A. CIRCUIT DESCRIPTION
Fig. 3 illustrates the circuit configuration of the typical
EV charger with the proposed SS-IBC employing auxiliary
resonant circuit. Fig. 4 shows the one phase of proposed soft
switching interleaved boost converter. One auxiliary active
switch (S2), one resonant capacitor (Cr) and two diodes
(D1 and D2) are added to the conventional soft switching
boost converter. The proposed IBC can be operated as a
bidirectional converter if the output diode Do and diode D2
are replaced by active switches. In addition to the simplicity,
the essential characteristic of the proposed converter is the
lower current and voltage stress on the active and auxiliary
switch. The utilization of proposed resonance circuit enables
zero voltage switching (ZVS) for the switches and diodes.
Thus, resulting in higher conversion efficiency. Several
phases of the proposed converter can be linked in parallel
to develop a multiphase interleaved boost converter. The
operation of the proposed multiphase interleaved converter is
identical to that of the one phase boost converter. All phases
are ideally identical with shifted control signals and are
controlled by PWM control strategy of the equal switching
frequency and duty cycle. The PWM switching function for
all phases are equal, but phase shifted by 360/N degrees,
where N is the number of phases. The proposed converter
can be considered as a cost effective retrofit of the existing
boost converters. It offers a stable high DC voltage power
supply for the load not only from the utility or conventional
energy storage systems as battery, but also from renewable
resources like PV, FC or wind systems. Analysis, design, and
simulation of the proposed converter are carried out using

PSIM simulation software and verified experimentally on a
hardware setup. In addition, an appropriate design example
to demonstrate the sizing of the required components and
circuit parameters is investigated. Moreover, comparison of
power conversion efficiency and the ripple factor of the
input current between the proposed SS-IBC and conven-
tional hard switching converter are considered. A high and
steady conversion efficiency more than 97% is obtained
and the ripple factor is well improved as the number of
interleaved phases increases. Furthermore, the simulation
and computed voltage and current waveforms are validated
experimentally.

B. OPERATION PRINCIPLES AND OPERATION MODES
The detailed analysis of the converter is conducted in discon-
tinuous conductionmode (DCM) under steady state operation
condition. To facilitate the analysis, all power switches and
passive elements are assumed ideal. The switching loss and
internal resistance of inductor and capacitor are considered
negligible. The operation modes are divided into five
operation modes during each switching cycle. The equivalent
circuit with the current paths during each mode are depicted
Fig. 5, while the relevant voltage and current waveforms
during each operation mode are illustrated in Fig. 6.
Mode 1 (to ≤ t < t1): Before the starting of mode 1,

the resonant capacitor Cr is initially charged up to the output
voltage V0 and the boost inductor current iLb is zero. Mode 1
starts when the main active switch S1 and the auxiliary
active switch S2 are simultaneously turned-on at t = to. The
boost inductor current iLb and the switches currents is1, is2
start to increase progressively from zero initial value and
the capacitor starts to discharge gradually from V0 to zero.
Therefore, both active switches S1 and S2 are turned-on at
zero current switching (ZCS) conditions. By assuming the
time origin to = 0 for simplicity, the resonant capacitor
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FIGURE 6. Relevant voltage and current waveforms during one switching cycle.
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voltage, the boost inductor voltage, and switches currents can
be given as follows:

vcr (t) = (Vin + V 0)cos(ωr t)− Vin (1)

vLb(t) = (Vin + V 0)cos(ωr t) (2)

iLb (t) = is1 (t) = is2(t) = (Vin + V 0)

√
Cr
Lb

sin(ωr t) (3)

where ωr is the angular resonance frequency and is defined
as:

ωr =
1

√
LbCr

(4)

Mode 1 is completed at time t1 when the resonant capacitor
is totally discharged to zero and the boost inductor current
reaches the value ILb1 at the end of this mode.

t1 = to +
√
LbCrcos−1(

Vin
Vin + V 0

) (5)

ILb1 = iLb (t1) = (
√
V 2
o + 2V 0Vin)

√
Cr
Lb

(6)

Mode 2 (t1 < t < t2): This mode is the boost inductor
energy charging mode, and it is started when the voltage
across the resonant capacitor reaches zero at time t1. When
the resonant capacitor is fully discharged at time t1, the
auxiliary diodes D1 and D2 become forward biased and
start to be conducting. The boost inductor voltage equals the
supply voltage, the resonant capacitor voltage is kept at zero
value and the boost inductor current is equally divided to
the parallel paths (S1 − D1) and (S2 − D2) and it increases
linearly as:

vcr (t) = 0 (7)

vLb(t) = Vin (8)

iLb (t) =
Vin
Lb
(t− t1)+ (

√
(V 2

o + 2V 0Vin)

√
Cr
Lb

(9)

is1 (t) = is2 (t) =
iLb (t)
2

(10)

This mode is terminated when the main switch S1 and the
auxiliary switch S2 are simultaneously turned-off at time t2.

t2 = to + DTs (11)

where D is the duty cycle of the main and auxiliary
switches S1, S2.

The boost inductor current reaches ILb2 at the end of this
mode.

ILb2= iLb (t2)=
Vin
Lb
(DTs−t1)+(

√
V 2
o +2V 0Vin)

√
Cr
Lb

(12)

ILb2=
Vin
Lb

(
DTs −

√
LbCrcos−1(

Vin
Vin + V 0

)
)

+(
√
V 2
o + 2V 0Vin)

√
Cr
Lb

(13)

Mode 3 (t2 < t < t3): This mode begins when the main
switch S1 and the auxiliary switch S2 are simultaneously
turned off at time t2, the resonance starts in the loop contains
input voltage Vin, boost inductor Lb, diode D2, resonant
capacitor Cr and diode D1. The voltage across the main
switch S1 and the auxiliary switch S2 increase gradually
from zero due to the existence of the resonant capacitor
Cr . Therefore, the main and the auxiliary switches S1S2
are turned-off at zero voltage switching (ZVS). Moreover,
the voltage across the auxiliary diodes D1 and D2 are zero,
therefore D1 and D2 are also turned-on at ZVS. The voltage
and current relations are as follows:

vLb (t) = Vin cosωr (t − t2)−

√
Lb
Cr
Ilb2 sinωr (t − t2) (14)

vcr (t)=−V in (1−cosωr (t−t2))+

√
Lb
Cr
Ilb2 sinωr (t−t2)

(15)

iLb (t) =

√
Cr
Lb
Vin sinωr (t − t2)+ Ilb2 cosωr (t − t2) (16)

During this mode the boost inductor current reaches its
maximum value that is given by

ILbmax =

√
Cr
Lb
V 2
in + I

2
Lb2 (17)

The boost inductor current can be simplified to:

iLb (t) = ILbmaxsin

ωr (t − t2)+ tan−1

√
Lb
Cr
ILb2

Vin

 (18)

During mode 3, the resonance capacitor voltage increases
gradually from zero and this mode maintains till the
resonance capacitor voltage vcr (t) reaches the output voltage
V0 and the boost inductor voltage reaches a negative voltage
equals (Vin − V o) at time t3.

t3 = to + DTs +
√
LbCr

sin−1 Vo+V in

(V 2
in +

Lb
Cr
I2Lb2)

−tan−1
Vin√
Lb
Cr
ILb2

 (19)

ILb3 =

√
Cr
Lb
Vin sinωr (t3 − DTs)+ Ilb2 cosωr (t3 − DTs)

(20)

Mode 4 (t3 < t < t4): This mode is the energy
dischargingmode, and it begins when the resonance capacitor
voltage vcr (t) reaches the output voltage V0 at time t3.
At this moment, the conduction of diodes D1 and D2 is
ended and they turned-off at ZVS. The main and auxiliary
switches are in off state, and the accumulated energy stored
in the boost inductor is transferred to the load via the
output diode Do. During mode 4, the boost inductor current
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gradually decreases and finally reaches zero at time t4. The
resonance capacitor and the boost inductor voltages are kept
at V0 and (Vin − V o); respectively. The voltage and current
relations during mode 4 are as follows:

vcr (t) = Vo (21)

vLb (t) = Vin − Vo (22)

iLb (t) =
Vin − Vo

Lb
(t− t3)+ ILb3 (23)

t4 = t3 +
LbILb3
Vo − Vin

(24)

Mode 5 (t4 < t < t5): During mode 5, the boost inductor
current is zero and the output current takes its path through
the output capacitorCo. The boost inductor current holds zero
value till the beginning of the next switching cycle when the
switches S1 and S2 are tuned-on again at the t5.

vcr (t) = Vo (25)

vLb (t) = 0 (26)

iLb (t) = 0 (27)

The voltage gain (Vo/Vin) of the proposed converter can be
obtained from the volts balance equation of the boost inductor
voltage through one complete switching period. Using the
volt-second balance equation during one switching period,
the mean value of the boost inductor voltage Vlb,dc should be
zero. Therefore, average boost inductor voltage is given by:

VLb,dc =
1
Ts

∫ Ts

0
vLb (t) = 0 (28)

VLb,dc =
√
LbCr

(
V 2
o + 2VoVin

)
+Vin (DTs − t1)− LbILb2 = 0 (29)

The average input current Iin,dc can be obtained by
integrating iLb (t) given by equations (3), (9), (16), (23) and
(27) during each operating mode as follows:

Iin,dc=
1
Ts

∫ Ts

0
iLb (t) (30)

Iin,dc=
1
Ts



CrVo +
Vin
2Lb

(t2 − t1)2 + ILb1 (t2 − t1)

−CrVin(cos (w (t2 − t1)− 1)
+ ILb2

√
LbCr (sin (w (t2 − t1))

+
LbI2Lb3

2(Vo − Vin)


(31)

Equation (31) can be simplified as:

Iin,dc =
Vo

Ts(Vo − Vin)

{
2CrVo +

Vin
2Lb

(t2 − t1)2

+ ILb1 (t2 − t1)
}

(32)

The input power can be given by

Pin = VinIin,dc =
VoVin

Ts(Vo − Vin)

{
2CrVo +

Vin
2Lb

(t2 − t1)2

+ ILb1 (t2 − t1)
}

(33)

FIGURE 7. Comparison between voltage gain of proposed and
conventional converter: Lb = 50 µH,Cr = 32 nF , fs = 40 kHz.

FIGURE 8. Comparison between voltage and current waveforms of
proposed and conventional converter.

Equation (29) is an implicit relationship in the voltage gain
of the proposed boost converter and by solving it numerically,
the voltage gain can be obtained and compared to that of
the standard boost converter. The comparison between the
voltage gain of the proposed and standard boost converter is
given in Fig. 7. It is clear that the proposed boost converter
has a high voltage gain compared to the standard one.
Comparison between voltage and current waveforms of the
proposed and conventional converter are depicted in Fig. 8.
Equations (1)-(27) have been programed and the computed
voltage and current waveforms are illustrated in Fig. 9 which
are identical to the expected voltage and current waveforms
presented in Fig. 6.

III. DESIGN OF CIRCUIT PARAMETERS
The values of the boost inductor Lb and resonant capacitor Cr
of the proposed soft switching boost converter are selected
according to the maximum and the minimum output power
corresponding to the maximum and minimum duty cycles,
Dmax andDmin respectively. These values determine the range
of the soft switching control of output power. Increasing the
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FIGURE 9. Computational results of boost inductor and resonant
capacitor voltage and current waveforms.

FIGURE 10. Effect of duty cycle on the boost inductor current.

value of boost inductor leads to continuous current operation
so that the inductor current does not reach zero in mode 4.
Therefore, the switches do not turn-on at ZCS. On the other
hand, increasing the size of the resonant capacitor leads to
the resonant capacitor not being fully discharged at the end of
mode 1. This action makes it have a residual voltage and this
voltage continues until the end of mode 2. This in turn leads
to the fact that the two active switches S1 and S2 do not turn
off at ZVS. Consequently, the values of the boost inductor
and resonant capacitor should be designed according to these
principles.

Fig. 10 depicts the boost inductor current at different duty
cycles ranging from minimum duty cycle Dmin to maximum
duty cycle Dmax . The value of the boost inductor achieve
soft switching operation at maximum power operation is
determined from zero-current crossing in mode 4. At this
condition, mode 5 disappears and mode 4 ends exactly at the
beginning of the next switching cycle (critical discontinuous
operation). Therefore, to maintain soft switching operation
at maximum power, the maximum interval time of mode 4,
t4,max , should be smaller than or equal one switching
period Ts.

t4,max ≤ Ts (34)

In the same way, at minimum power, the minimum interval
time of mode 4 should be maintained greater than or equal to
a minimum value, t4,min, to allow the resonant capacitor to be
fully discharged before the zero crossing of the boost inductor
current.

Therefore, the condition of soft switching operation should
satisfy the following condition:

t4,min < t4 = Ts (35)

From Fig. 10, it is clear that the output power of the
proposed SS-IBC can be regulated by controlling the duty
cycle of the main and auxiliary switches. With an increase in
the duty cycle, the output power grows, and with a decrease
in the duty cycle, the output power decreases. The variations
of the boost inductor current at different values of the resonant
capacitor and boost inductor values while maintaining soft
switching operation conditions are given in Figs. 11 and 12,
respectively. From Fig. 11(b), decreasing the value of the
resonant capacitor results in low value of minimum power
limit and increasing the soft switching area. However, small
values of resonant capacitor led to a high voltage change rate
(dv/dt) on the active switches at turn-off transition.

Atminimumpower,Pin,min, operation, the second and third
terms in equation (33) are too small and can be neglected.
Therefore, Pin,min can be simplified to:

Pin,min = VinIin,dc,min =
2CrVinV 2

o

Ts(Vo − Vin)
(36)

A minimum power of 460 W is selected in the design of
the proposed soft switching converter and the value of the
resonant capacitor can be calculated using (36) as 32 nF . This
value ofminimumpower is selected to be theminimumpower
under complete soft switching operation conditions and the
converter is still capable to operate at small power but without
soft switching operation. From Fig. 12(b), as the value of the
boost inductor increases, the peak value of the boost inductor
current decreases but at the expense of the lengthen of the
interval time of mode 4. This action may lead to continuous
current operation and the loss of soft switching operation.
A value of 50 µH for the boost inductor is found to be proper
to keep soft switching operation at maximum output power of
8.2 kW. Fig. 13 illustrates the soft switching operation range
as a function of the resonant capacitor at a boost inductor
of 50 µH .

The peak inductor current is the sum of the average input
current plus one-half of the peak-peak ripple and it can be
expressed as follows:

1I = 2(ILb,PK − Iin,dc) (37)

The formula for ripple factor is:

Ripple factor =
1I
Iin,dc

(38)

IV. SIMULATION RESULTS
The proposed soft switching boost converter and its mul-
tiphase interleaved converter have been simulated using
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FIGURE 11. Effect of the resonant capacitor on the boost inductor current at maximum and minimum output power, Lb = 50 µH : (a) Maximum
power, (b) Minimum power.

FIGURE 12. Effect of the boost inductor on the boost inductor current at maximum and minimum output power, Cr = 32 nF : (a)
Maximum power, (b) Minimum power.

FIGURE 13. Soft switching area as a function of resonant capacitor.

PSIM software [30] with the circuit constants and simulation
specifications given in Table 1. The conversion efficiency

TABLE 1. Simulation constants and circuit parameters.

calculation is calculated using the thermal module of the
PSIM program that provides a quick way of estimating the
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FIGURE 14. Simulation voltage and current waveforms from up to down: gating signal, active switch voltage and current,
input and output voltage.

FIGURE 15. Simulation voltage and current waveforms from up to down: boost inductor voltage, boost inductor
current, resonant capacitor voltage and resonant capacitor current.

losses of semiconductor devices and the core and the winding
losses of inductors. The simulation results with the voltage
and current waveforms are given and discussed in detail in
this section.

The simulated voltage and current waveforms during one
switching cycle at a switching frequency of 40 kHz are
shown in Figs. 14-16. From the obtained voltage and current
waveforms, it is clear to observe that the representative results
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FIGURE 16. Simulation voltage and current waveforms from up to down: diode D1 voltage, D1 current, diode D2
voltage and D2 current.

FIGURE 17. Variation of the average input current with the duty cycle.

of voltage and current waveforms are in perfect agreement
with the expected of Fig. 6 and the computational results
shown in Fig. 9.

Fig. 17 depicts the variation of the average input current
with the duty cycle of the proposed converter and the
conventional hard switching boost converter.

The output power of the proposed converter is regulated
by controlling the duty cycle. Fig. 18 shows the output
power regulation characteristic with the soft switching
operation range of the proposed converter as compared with
the conventional one for the same parameter values. The
proposed converter draws more current at the same duty
cycles, this is because it gives more output power than the
conventional one at the same working conditions. It is clear to
note that the proposed converter delivers higher rated power
of 8.2 kW compared to 5.72 kW of the conventional one

FIGURE 18. Output power regulation characteristic.

(about 30%) at rated power condition. Efficiency comparison
between the proposed soft switching and conventional boost
converter is shown in Fig. 19. A stable and steady high
conversion efficiency more than 97% can be obtained over
a wide output power conversion range between minimum
power of 460 W up to 8.2 kW with complete soft switching
operation.

The efficiency comparison of Fig. 19 validates the
enhanced performance of the proposed converter with
the auxiliary resonant circuit over the conventional hard
switching converter. This is suitable for battery charger
applications since the converter is required to work from
low load state to full load state. From Fig. 19, it is clear
to notice that the proposed converter has a high efficiency
compared to the conventional hard switching converter at
low and high output power ratings. Where, as the output
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FIGURE 19. Power conversion efficiency comparison.

power consumption reduces, the duty cycle D also lessens
and the turn-on time duration of the main and active switches
S1 and S2 reduces. When the input power consumption is
less than the minimum power given by (36), the voltage vcr
across the resonant capacitor Cr is not fully discharged to
zero during Mode 1. Therefore, this residual voltage across
Cr appears across the switches S1 and S2 at turn-off instant
preventing them from complete zero voltage switching (ZVS)
operation. This action produces a small overlap transition
between the switch’s voltages and currents waveforms at
turn-off instants. As a result, increasing the switching losses
and reduces the power conversion efficiency. Nevertheless,
these switching power losses are much less compared to
that of the hard switching operation because the residual
voltage across Cr is much smaller than the voltage resulting
from hard switching turn-off operation. Therefore, this turn-
off can be considered a quazi-ZVS turn-off switching as
shown in Fig. 20(a). On other hand, at high power above
the rated power, the converter operates at continuous current
mode and the turn-on switching of the active switches S1
and S2 occurs at a residual boost inductor current iLb. This
action leads to an increase in the turn on switching losses
but it still less than that of the hard switching converter.
This turn-on switching can be considered a quazi-ZVS
turn-on.

Fig. 21 shows the circuit configuration of proposed three
phase SS-IBC using the proposed one phase converter.
Figs. 22 and 23 depict the gating signal of the active switches
and the input current waveforms for different duty cycles of
0.40 and 0.61, respectively. The duty cycles for all phases are
equal and PWM switching function is shifted by 120◦.
The ripple factor of different phases of the proposed

multiphase interleaved boost converter compared to the
conventional hard switching converter is illustrated in Fig. 24.
It is obvious to note that the ripple factor is highly improved
as the number of interleaved phases increases. The ripple
factor at rated power is 1.65, 0.39 and 0.29 for the one-phase,
two-phase and three-phase interleaved converters, respec-
tively, compared to 2.33 of conventional hard switching
converter.

FIGURE 20. Quazi-soft switching of the proposed SS-IBC at turn-off and
turn-on of active switches.

TABLE 2. Scaled down prototype parameters.

V. EXPERIMENTAL RESULTS
In order to validate the analysis, different operation modes
and the performance of the proposed SS-IBC, experimental
tests were accomplished on a downsized hardware setup
rated 1.0 kW due to the limitation of the Lab facilities.
For the specification being considered in Table 2, Infineon
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FIGURE 21. Circuit configuration of the proposed three phase SS-IBC.

FIGURE 22. Boost inductor and input currents of proposed three phase interleaved boost converter, D = 0.40.

IPW60R070P6 MOSFETS are used for the switches S1 and
S2. On Semiconductor RURG5060 ultrafast diodes with soft
recovery characteristics are used for the diodes D1,D2 and
Do. The current and voltage waveforms have been recorded
using Tektronix TDS 2024C digital storage oscilloscope.
Fig. 25 illustrates the overall appearance of the prototype
implemented in the laboratory and the parameters are given in
Table 2. The experimental results are described and discussed
in the following:

The experimental voltage and current waveforms for
the one phase converter during two switching cycles at a
switching frequency of 25 kHz are shown in Figs. 26-28.
The five operation modes, which are analyzed in Section II,
are identified. The gating signal, waveforms of the active
switches’ voltage and current and output voltage are
illustrated in Fig. 25. The boost inductor voltage and
current waveforms and the resonance capacitor voltage
and current are shown in Fig. 26. The diodes D1
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FIGURE 23. Boost inductor and input currents of proposed three phase interleaved boost converter, D = 0.61.

FIGURE 24. Ripple factor of input current.

and D2 voltage and currents waveforms are depicted
in Figs 27.

Fig. 29 demonstrates the simulation results at the same
circuit parameters used in the downsized hardware listed in
table 2 and relevant to experimental results of Figs. 26-28.
From these experimental and simulation waveforms, it is
obvious that the experimental results are in perfect agreement
with those of computed and simulation results given at rated
power in Fig. 9 and Figs. 14-16, respectively.

FIGURE 25. Photo of the hardware setup.

The results displayed in Fig. 30 summarize the perfor-
mance of the proposed three phase SS-IBC at different
operation conditions of output power. The output power is
simply controlled by adjusting the duty cycle D. The 120◦

phase shift in the in the boost inductor currents is shown in
Figure 28(a), (c), (e), (g) and (h). Also, it can be observed
that the converter has a continues input current. The results
in Figure 28(b), (d), (f), (h) and (j) show the proposed three
phase SS-IBC input voltage, input current, output voltage
and output current with their associated average values at
five different values of duty cycles of 0.3, (4), (45), (0.5)
and (0.55), respective. These average values are used to
calculate the conversion efficiency of the proposed converter
at different loading levels and duty cycles (efficiency is
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FIGURE 26. Gating signal (CH1), switches voltage, and current waveforms
(CH2, CH3) and output voltage (CH4).

FIGURE 27. Voltages and currents of boost inductor (CH1., CH2) and
resonant capacitor (CH3, CH4).

FIGURE 28. Voltages and currents of diodes D1 (CH1, CH2) and
D2 (CH3, CH4).

95.84% at D = 0.3, 97.52% at D = 0.4, 97.57% at D = 0.45,
98.78% at D = 0.5, and 98.39% at D = 0.55). Maximum
efficiency is 98.78% at power of 798 W.

FIGURE 29. Simulation results for the downsized converter.

VI. COMPARISON WITH EXISTING TOPOLOGIES
Detailed comparison of the proposed converter with some
other soft switching converters found in the most recent
published work is listed in Table 3 in terms of topology,
number of used devices as compared to the conventional
hard switching converter, input voltage, output voltage, rated
power, switching frequency and conversion efficiency. It is
depicted that; the proposed converter has a lesser number of
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FIGURE 30. Experimental current and voltage waveforms summarize the performance of the proposed three-phase
SS-IBC at different operation points.
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TABLE 3. Comparison between the proposed soft switching converter with some other soft switching converters.

components and superior efficiency as compared to the other
converters.

Fig. 31 illustrates the efficiency comparison of the pro-
posed soft switching converter with the other soft switching
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FIGURE 31. Efficiency comparison of the proposed converter with other
converters at different load conditions.

converters at different output power range. Since the power
ratings of each converter are different as shown in Table 3,
the efficiency comparison is done in terms of thee normalized
output as a percentage of the rated output power of each
converter. It can be noted that the proposed converter has a
superior efficiency characteristic among the other converters
in a wide output power range.

VII. CONCLUSION
A soft switching multiphase SS-IBC working in discontin-
uous current mode with high voltage gain using auxiliary
resonant circuit for EV applications is presented in this
paper. Operation principles, detailed analysis, voltage and
current waveforms and performance evaluation have been
investigated through simulation and experimental results. The
input current is equally divided along two parallel phases and
consequently the current stress on the controlled switches and
the conduction losses are considerably reduced. Turning on
and off of the switches can be achieved at ZCS and ZVS,
respectively and overall efficiency of the proposed converter
has been improved. Due to the soft switching operation of the
main and auxiliary switches in a wide output power control
range, the proposed converter has lower switching losses
and consequently high conversion efficiency compared to
the standard hard switching boost converter. High conversion
efficiency more than 97% has been obtained in simulation for
a wide output power range of 8.2 kW to minimum power of
460 and the.

The converter performance is also validated experimen-
tally on a downsized hardware rated 1.0 kW and the
maximum efficiency is found to be 98.78%. The proposed
SS-IBC can be considered as a cost effective retrofit for
chargers and high voltage battery in EV applications.
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